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Window 4.8
Forced Response of an Underdamped System from Section 3.2

The response of an underdamped system
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(with zero initial conditions) is given by (for 0 6 ζ 6 1)
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F(τ)eζωnτ sin ωd(t - τ) dτ

where ωn = 1k>m, ζ = c>(2mωn), and ωd = ωn21 - ζ2. With nonzero ini-
tial conditions this becomes

x(t) = Ae-ζωnt sin (ωdt + ϕ) +
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where f = F>m and A and ϕ are constants determined by the initial conditions.

where di and ϕi must be determined by the modal initial conditions and ωdi =  

ωi21 - ζi
2 as before. Note that fi may represent a sum of forces if more than one 

force is applied to the system. In addition, if a force is applied to only one mass of 
the system, this force becomes applied to each of the modal equations (4.131) by 
the transformation S, as illustrated in the following example.

Example 4.6.1

Consider the simple two-degree-of-freedom system with a harmonic force applied to 
one mass as indicated in Figure 4.16.

For this example, let m1 = 9 kg, m2 = 1 kg, k1 = 24 N>m, and k2 = 3 N>m. Also 
assume that the damping is proportional with α = 0 and β = 0.1, so that c1 =  2.4 N # s>m 
and c2 = 0.3 N # s>m. Calculate the steady-state response.
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Figure 4.16  A damped two-degree-

of-freedom system for Example 4.6.1.
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Solution  The equations of motion in matrix form become
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The matrices M1>2 and M-1>2 become

M1>2
= J3 0

0 1
R  M-1>2

= C 1

3
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S
so that

C
∼

= M-1>2CM-1>2
= J 0.3 -0.1

-0.1 0.3
R and K

∼
= J 3 -1

-1 3
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The eigenvalue problem for K
∼

 yields

λ1 = 2 λ2 = 4 P = 0.7071 J1 -1

1 1
R

Hence the natural frequencies of the system are ω1 = 12 and ω2 = 2; the matrices 
PT C

∼
P and PT K

∼
P become

PT C
∼
P = J0.2 0

0 0.4
R and PT K

∼
P = J2 0

0 4
R

The vector f(t) = PTM-1>2BF(t) becomes

f(t) = J    0.2357 0.7071

-0.2357 0.7071
R  J 0

F2(t)
R = 0.7071 JF2(t)

F2(t)
R

Hence the decoupled modal equations become

r
$

1 + 0.2r
#
1 + 2r1 = 0.7071(3) cos 2t = 2.1213 cos 2t

r
$

2 + 0.4r
#
2 + 4r2 = 0.7071(3) cos 2t = 2.1213 cos 2t

Comparing the coefficient of r
#
i in each case to 2ζiωi yields

 ζ1 =

0.2

212
= 0.0707

 ζ2 =

0.4

2(2)
= 0.1000

Thus the damped natural frequencies become

 ωd1 = ω121 - ζ1
2
= 1.4106 ≈ 1.41

 ωd2 = ω221 - ζ2
2
= 1.9899 ≈ 1.99
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Note that while the force F2 is applied only to mass m2, it becomes applied to both 
coordinates when transformed to modal coordinates. The modal equations for r1 and 
r2 can be solved by equation (4.131), or in this case of a simple harmonic excitation, the 
particular solution is given directly by equation (2.36) as

 r1p(t) =

2.1213
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b
 = (1.040) cos (2t + 0.1974) = 1.040 cos (2t - 2.9449)

Note that the argument of the arctangent function is negative (222
- 22

6 0) so that 
the fourth quadrant angle must be used (see Window 2.4), yielding 2.9449 radians. The 
second mode particular solution is
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2
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Here rip is used to denote the particular solution of the ith modal equation. Note that 
r2(t) is excited at its resonance frequency but has high damping, so that the larger but 
finite amplitude for r2p(t) is not unexpected. If the transient response is ignored [it dies 
out per equation (2.30)], the preceding solution yields the steady-state response. The 
solution in the physical coordinate system is

xss(t) = M-1>2Pr(t) = J0.2357 -0.2357

0.7071 0.7071
R  J1.040 cos (2t - 2.9442)

2.6516 sin 2t
R

so that in the steady state

 x1(t) = 0.2451 cos (2t - 2.9442) - 0.6249 sin 2t

 x2(t) = 0.7354 cos (2t - 2.9442) + 8749 sin 2t

Note that even though there is a fair amount of damping in the resonant mode, the 
coordinates each have a large component vibrating near the resonant frequency.

n

Resonance

The concept of resonance in multiple-degree-of-freedom systems is similar to that 
introduced in Section 2.2 for single-degree-of-freedom systems. It is based on the 
idea that a harmonic driving force is exciting the system at its natural frequency, 
causing an unbounded oscillation in the undamped case and a response with a 
maximum amplitude in the damped case. However, in multiple-degree-of-freedom 
systems, there are n natural frequencies, and the concept of resonance is compli-
cated by the effects of mode shapes. Basically, if a force is applied orthogonally to 


